Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 6 de 6
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Nat Commun ; 15(1): 3049, 2024 Apr 08.
Artigo em Inglês | MEDLINE | ID: mdl-38589380

RESUMO

Raman spectroscopy provides non-destructive, label-free quantitative studies of chemical compositions at the microscale as used on NASA's Perseverance rover on Mars. Such capabilities come at the cost of high requirements for instrumentation. Here we present a centimeter-scale miniaturization of a Raman spectrometer using cheap non-stabilized laser diodes, densely packed optics, and non-cooled small sensors. The performance is comparable with expensive bulky research-grade Raman systems. It has excellent sensitivity, low power consumption, perfect wavenumber, intensity calibration, and 7 cm-1 resolution within the 400-4000 cm-1 range using a built-in reference. High performance and versatility are demonstrated in use cases including quantification of methanol in beverages, in-vivo Raman measurements of human skin, fermentation monitoring, chemical Raman mapping at sub-micrometer resolution, quantitative SERS mapping of the anti-cancer drug methotrexate and in-vitro bacteria identification. We foresee that the miniaturization will allow realization of super-compact Raman spectrometers for integration in smartphones and medical devices, democratizing Raman technology.

2.
Spectrochim Acta A Mol Biomol Spectrosc ; 280: 121518, 2022 Nov 05.
Artigo em Inglês | MEDLINE | ID: mdl-35728402

RESUMO

We have recorded ATR-IR spectra of binary mixtures in the (quasi-)ideal systems Benzene-Toluene, Benzene-Carbon tetrachloride and Benzene-Cyclohexane and performed classical least squares, inverse least squares and principal component regression on the resulting spectra. In contrast to the general expectation, the spectra of ideal mixtures follow only roughly Beer's approximation, in particular stronger bands show shifts and increased intensities for intermediary compositions since the polarization of matter by light cannot be neglected. As a consequence, these conventional regression techniques lead to principle and unavoidable errors, even though some of the classical regression techniques are assumed to be able to cope with nonlinearities. In particular in the system Benzene-Carbon tetrachloride large errors result and the relative average error of the volume fraction determination is about 10 % for all three methods. Especially remarkable is that the multivariate regression methods do not perform better than the classical univariate calibration if for the latter a peak due to an oscillator with comparably low oscillator strength is selected, since for such bands polarization effects are weak and Beer's approximation holds comparably well.

3.
Light Sci Appl ; 11(1): 143, 2022 May 19.
Artigo em Inglês | MEDLINE | ID: mdl-35585059

RESUMO

Raman spectroscopy combined with augmented reality and mixed reality to reconstruct molecular information of tissue surface.

4.
Appl Spectrosc ; 76(1): 92-104, 2022 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-34964366

RESUMO

We have recorded attenuated total reflection infrared spectra of binary mixtures in the (quasi-)ideal systems benzene-toluene, benzene-carbon tetrachloride, and benzene-cyclohexane. We used two-dimensional correlation spectroscopy, principal component analysis, and multivariate curve resolution to analyze the data. The 2D correlation proves nonlinearities, also in spectral ranges with no obvious deviations from Beer's approximation. The number of principal components is much higher than two and multivariate curve resolution carried out under the assumption of the presence of a third component, results in spectra which only show bands of the original components. The results negate the presence of third components, since any complex should have lower symmetry than the individual molecules and thus more and/or different infrared-active bands in the spectra. Based on Lorentz-Lorenz theory and literature values of the optical constants, we show that the nonlinearities and additional principal components are consequences of local field effects and the polarization of matter by light. Lorentz-Lorenz theory is, however, not able to explain, for example, the different blueshifts of the strong A2u band of benzene in the three mixtures. Obviously, infrared spectroscopy is sensitive to the short-range order around the molecules, which changes with content, their shapes, and their anisotropy.

5.
Nat Commun ; 10(1): 5555, 2019 12 05.
Artigo em Inglês | MEDLINE | ID: mdl-31804493

RESUMO

Non-destructive orientation mapping is an important characterization tool in materials science and geoscience for understanding and/or improving material properties based on their grain structure. Confocal Raman microscopy is a powerful non-destructive technique for chemical mapping of organic and inorganic materials. Here we demonstrate orientation mapping by means of Polarized Raman Microscopy (PRM). While the concept that PRM is sensitive to orientation changes is known, to our knowledge, an actual quantitative orientation mapping has never been presented before. Using a concept of ambiguity-free orientation determination analysis, we present fast and quantitative single-acquisition Raman-based orientation mapping by simultaneous registration of multiple Raman scattering spectra obtained at different polarizations. We demonstrate applications of this approach for two- and three-dimensional orientation mapping of a multigrain semiconductor, a pharmaceutical tablet formulation and a polycrystalline sapphire sample. This technique can potentially move traditional X-ray and electron diffraction type experiments into conventional optical laboratories.

6.
Phys Rev E ; 95(2-1): 022133, 2017 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-28297985

RESUMO

Mutual diffusion in multicomponent liquids is studied. It is taken into consideration that the influence of complex formation on the diffusion process may be substantial. The theory is applied to analyze mass transfer in an acetone-chloroform solution. The molecular complex concentration was obtained from the analysis of Fourier transform infrared spectra of this solution. Taking into account molecular complex formation allows one to explain the experimental dependence of diffusion coefficients on the composition (components concentration). The accuracy of experimental and theoretical data descriptions in the frame of our model is compared to the accuracy for some other approaches.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...